» » Фибринолиз фазы. Процесс фибринолиза проходит в три фазы. Компоненты системы фибринолиза

Фибринолиз фазы. Процесс фибринолиза проходит в три фазы. Компоненты системы фибринолиза

Система фибринолиза - антипод системы свертывания крови. Она обеспечивает растворение фибриновых нитей, в результате чего в сосудах восстанавливается нормальный кровоток.

Она имеет строение, аналогичное системе свертывания крови:

  1. компоненты системы фибринолиза., находящиеся в периферической крови;
  2. органы, продуцирующие и утилизирующие компоненты системы фибринолиза;
  3. органы, разрушающие компоненты системы фибринолиза;
  4. механизмы регуляции.

Система фибринолиза в норме оказывает строго локальное действие, т. к. компоненты ее адсорбируются на фибриновых нитях под действием фибринолиза нити растворяются, в процессе гидролиза образуются вещества, растворимые в плазме - продукты деградации фибрина (ПДФ) - они выполняют функцию вторичных антикоагулянтов, а затем выводятся из организма.

Значение системы фибринолиза.

Растворяет нити фибрина, обеспечивая реканализацию сосудов.

Поддерживает кровь в жидком состоянии.

Компоненты системы фибринолиза

Компоненты системы фибринолиза:

  1. плазмин (фибринолизин);
  2. активаторы фибринолиза;
  3. ингибиторы фибринолиза.

Плазмин - вырабатывается в неактивном состоянии в виде плазминогена. По своей природе это белок глобулиной фракции, вырабатывается в печени. Много его в сосудистой стенке. В гранулоцитах, эндофилах, легких, матке, предстательной и щитовидной железах.

В активном состоиянии плазмин адсорбируется на фибриновых нитях и действует как протеолитический фермент. В больших количествах плазмин может мутировать и фибриноген, образуя продукты деградации фибрина и фибриногена (ПДФФ), которые тоже являются вторичными антикоагулянтами.

При повышении количества плазмина, уменьшается количество фибриногена, возникает гипо- или афибринолитическое кровотечение.

Активаторы фибринолиза - превращают плазминоген в плазмин. Делятся на плазменные и тканевые.

Плазменные активаторы включают 3 группы веществ: различные фосфатазы плазмы крови - они находятся в активном состоянии - это активные (прямые) активаторы (физиологические). Кроме того, трипсин: вырабатывается в поджелудочное железе, попадает в 12-перстную кишку, там всасывается в кровь. В норме трипсин находится в крови в виде следов. При поражении поджелудочной железы концентрация трипсина в крови резко возрастает. Он полностью расщепляет плазминоген, что приводит к резкому снижению фибринолитической активности.

Активность урокиназы - она вырабатывается в юкстагломерулярном аппарате почек. Встречается в моче, поэтому моча может обладать слабой фибринолитической активностью.

Активаторы бактериального происхождения - стрепто- и стафиллокиназы.

Непрямые активаторы - находятся в плазме в неактивном состоянии, для их активации нужны белки лизокиназы: тканевые мукокиназы - активируются при травме тканей; плазменные лизокиназы - самый важный XII фактор свертывания крови.

Тканевые активаторы - находятся в тканях.

Их особенности:

  1. тесно связаны с клеточной структурой и освобождаются лишь при повреждении ткани;
  2. всегда находятся в активном состоянии;
  3. сильное, но ограниченное действие.

Ингибиторы делятся на:

  1. ингибиторы, препятствующие превращению плазминогена в плазмин;
  2. препятствующие действию активного плазмина.

Сейчас существуют искусственные ингибиторы, которые используются для борьбы с кровотечениями: Е-аминокапроновая кислота, контрикал, трасилол.

Фазы ферментативного фибринолиза

Фазы ферментативного фибринолиза:

I фаза: активация неактивных активаторов. При травме ткани освобождаются тканевые лизокиназы, при контакте с поврежденными сосудами активируются плазменные лизокиназы (XII плазменный фактор), т. е. происходит активация активаторов.

II фаза: активация плазмиогена. Под действием активаторов от плазминогена отщепляется тормозная группа и он становится активным.

III фаза: плазмин расщепляет фибриновые нити до ПДФ. Если участвуют уже активные активаторы (прямые) - фибринолиз протекает в 2 фазы.

Понятие о ферментативном фибринолизе

Процесс неферментативного фибринолиза идет без плазмина. Действующее начало - комплекс гепарина С.

Данный процесс идет под контролем следующих веществ.

  1. тромбогенные белки - фибриногеном, XIII плазменным фактором, тромбином;
  2. макроэрги - АДФ поврежденных тромбоцитов;
  3. компоненты фибринолитической системы: плазмином, плазминогеном, активаторами и ингибиторами фибринолиза;
  4. гормонами: адреналином, инсулином, тироксином.

Суть: комплексы гепарина действуют на нестабильные фибриновые нити (фибрин S): после действия фибрино-стабилизирующего фактора комплексы гепарина (на фибрин J) не действуют. При этом виде фибринолиза не идет гидролиз фибриновых нитей, а идет информационное изменение молекулы (фибрин S из фибриллярной формы переходит в тобулярную).

Взаимосвязь системы свертывания крови и системы фибринолиза

В нормальных условиях взаимодействие системы свертывания крови и системы фибринолиза происходит таким образом: в сосудах постоянно идет микросвертывание, что вызвано постоянным разрушением старых тромбоцитов и выделением из них в кровь тромбоцитарных факторов. В результате образуется фибрин, который останавливается при образовании фибрина S, который тонкой пленкой выстилает стенки сосудов. Нормализуя движение крови и улучшая ее реалогические свойства.

Система фибринолиза регулирует толщину этой пленки, от которой зависит проницаемость сосудистой стенки. При активации свертывающей системы активируется и система фибринолиза.

Фибринолиз является неотъемлемой частью системы гемостаза, всегда сопровождает процесс свертывания крови и активируется факторами, принимающими участие в этом процессе. Являясь важной защитной реакцией, фибринолиз предотвращает закупорку кровеносных сосудов фибриновыми сгустками. Кроме того, фибринолиз ведет к реканализации сосудов после остановки кровотечения.

Ферментом, разрушающим фибрин, является плазмин (иногда его называют «фибринолизин»), который в циркуляции находится в неактивном состоянии в виде профермента плазминогена.

Фибринолиз, как и процесс свертывания крови, может протекать по внешнему и внутреннему механизму (пути). Внешний механизм активации фибринолиза осуществляется при участии тканевых активаторов, которые синтезируются главным образом в эндотелии сосудов. К ним относятся тканевый активатор плазминогена (ТАП) и урокиназа. Последняя также образуется в юкстагломерулярном комплексе (аппарате) почки. Внутренний механизм активации фибринолиза осуществляется плазменными активаторами, а также активаторами форменных элементов крови - лейкоцитов, тромбоцитов и эритроцитов и разделяется на Хагеман-зависимый и Хагеман-независимый. Хагемаи-зависимый фибринолиз протекает под влиянием факторов ХIIа, калликреина и ВМК, которые переводят плазминоген в плазмин. Хагеман-независимый фибринолиз осуществляется наиболее быстро и носит срочный характер. Его основное назначение сводится к очищению сосудистого русла от нестабилизированного фибрина, образующегося в процессе внут-рисосудистого свертывания крови.

Образовавшийся в результате активации плазмин вызывает расщепление фибрина. При этом появляются ранние (крупномолекулярные) и поздние (низкомолекулярные) ПДФ.

В плазме находятся и ингибиторы фибринолиза. Важнейшими из них являются а²-антиплазмин, связывающий плазмин, трипсин, калликреин, урокиназа, ТАП и, следовательно, вмешивающийся в процесс фибринолиза как на ранних, так и на поздних стадиях. Сильным ингибитором плазмина служит ai-протеазный ингибитор. Кроме того, фибринолиз тормозится да-макроглобулином, Ci-протеазным ингибитором, а также рядом ингибиторов активатора плазминогена, синтезируемых эндотелием, макрофагами, моноцитами и фибробластами.

Фибринолитическая активность крови во многом определяется соотношением активаторов и ингибиторов фибринолиза.

При ускорении свертывания крови и одновременном торможении фибринолиза создаются благоприятные условия для развития тромбозов, эмболий и ДВС-синдрома.

Наряду с ферментативным фибринолизом, по мнению профессора Б.А.Кудряшова, существует так называемый неферментативный фибринолиз, который обусловлен комплексными соединениями естественного антикоагулянта гепарина с ферментами и гормонами. Неферментативный фибринолиз приводит к расщеплению нестабилизированного фибрина, очищая сосудистое русло от фибрин-мономеров и фибрина s.

Регуляция свертывания крови и фибринолиза

Свертывание крови, контактирующей с травмированными тканями, осуществляется за 5-10 мин. Основное время в этом процессе уходит на образование протромбиназы, тогда как переход протромбина в тромбин и фибриногена в фибрин осуществляется довольно быстро. В естественных условиях время свертывания крови может уменьшаться (развивается гиперкоагуляция) или удлиняться (возникает гипокоагуляция).

Значительный вклад в изучение регуляции свертывания крови и фибринолиза внесли отечественные ученые Е.С.Иваницкий-Василенко, А.А.Маркосян, Б.А.Кудряшов, С.А.Георгиева и др.

Установлено, что при острой кровопотере, гипоксии, интенсивной мышечной работе, болевом раздражении, стрессе свертывание крови значительно ускоряется, что может привести к появлению фибрин-мономеров и даже фибрина s в сосудистом русле. Однако благодаря одновременной активации фибринолиза, носящего защитный характер, появляющиеся сгустки фибрина быстро растворяются и не наносят вреда здоровому организму.

Ускорение свертывания крови и усиление фибринолиза при всех перечисленных состояниях обусловлены повышением тонуса симпатической нервной системы и поступлением в кровоток адреналина и норадреналина. При этом активируется фактор Хагемана, что приводит к запуску внешнего и внутреннего механизма образования протромбиназы, а также стимуляции Хагеман-зависимого фибринолиза. Кроме того, под влиянием адреналина усиливается образование апопротеина III - составной части тромбопластина, и наблюдается отрыв клеточных мембран от эндотелия, обладающих свойствами тромбопластина, что способствует резкому ускорению свертывания крови. Из эндотелия также выделяются ТАП и урокиназа, приводящие к стимуляции фибринолиза.

В случае повышения тонуса парасимпатической нервной системы (раздражение блуждающего нерва, введение АХ, пилокарпина) также наблюдаются ускорение свертывания крови и стимуляция фибринолиза. В этих условиях происходит выброс тромбопластина и активаторов плазминогена из эндотелия сердца и сосудов. Следовательно, основным эфферентным регулятором свертывания крови и фибринолиза является сосудистая стенка. Напомним также, что в эндотелии сосудов синтезируется Pgb, препятствующий в кровотоке адгезии и агрегации тромбоцитов. Вместе с тем развивающаяся гиперкоагуляция может смениться гипокоагу-ляцией, которая в естественных условиях носит вторичный характер и обусловлена расходом (потреблением) тромбоцитов и плазменных факторов свертывания крови, образованием вторичных антикоагулянтов, а также рефлекторным выбросом в сосудистое русло в ответ на появление фактора На, гепарина и антитромбина III (см. схему 6.4).

При многих заболеваниях, сопровождающихся разрушением эритроцитов, лейкоцитов, тромбоцитов и тканей и или гиперпродукцией апопротеина III стимулированными эндотелиальными клетками, моноцитами и макрофагами (эта реакция опосредована действием антигенов и интерлейкинов), развивается ДВС-синдром, значительно отягощающий течение патологического процесса и даже приводящий к смерти больного. В настоящее время ДВС-синдром обнаружен более чем при 100 различных заболеваниях. Особенно часто он возникает при переливании несовместимой крови, обширных травмах, отморожениях, ожогах, длительных оперативных вмешательствах на легких, печени, сердце, предстательной железе, всех видах шока, а также в акушерской практике при попадании в кровоток матери околоплодных вод, насыщенных тромбопластином плацентарного происхождения. При этом возникает гиперкоагуляция, которая из-за интенсивного потребления тромбоцитов, фибриногена, факторов V, VIII, XIII и др. в результате интенсивного внутрисосудистого свертывания крови сменяется вторичной гипокоагуляцией вплоть до полной неспособности крови к образованию фибриновых сгустков, что приводит к трудно поддающимся терапии кровотечениям.

Знание основ физиологии гемостаза позволяет клиницисту избрать оптимальные варианты борьбы с заболеваниями, сопровождающимися тромбозами, эмболиями, ДВС-синдромом и повышенной кровоточивостью

После заживления стенки сосуда крайне важно сть в тромбе отпадает. Начинается процесс его растворения -Фибринолиз. Вместе с тем, небольшое количество фибриногена постоянно переходит в фибрин. По этой причине фибринолиз необходим и для уравновешивания этого процесса. Фибринолиз такой же цепной процесс, как и свертывание крови. Он осуществляется ферментной фнбринолитической системой. В крови содержится неактивный фермент - плазминоген. Под действием ряда других ферментов он переходит в активную форму - плазмнн. Плазмин по составу близок к трипсину. Под влиянием плазмина от фибрина отщепляются белки, которые становятся растворимыми. В последующем они расщепляются пептидазами крови до аминокислот. Активация плазминогена происходит несколькими путями. В первую очередь, он может активироваться плазмокиназамн эндотелиальных и других клеток. Особенно много плазмокиказ в мышечных клетках матки. Во-вторых, его может активировать XII фактор Хагемана совместно с ферментом калликреином. В третьих, перезолит его в активную форму фермент урокиназа, образующийся в почках. При инфицировании организма активатором плазминогена может служить стрептокиназа бактерий. По этой причине инфекция, попавшая в рану, распространяется по сосудистому руслу. В клинике стрептокиназу используют для лечения тромбозов. Фибринолиз продолжается в течение нескольких суток. Для инактивации плазмина в крови находятся его антагонисты - антиплазмины. Их действие направлено на сохранение тромба. По этой причине во внутренних слоях тромба преобладает плазмин, наружных - антиплазмин.

Противосвертывающая система.

В здоровом организме не возникает внутрисосудистого свертывания крови, потому что имеется и система противосвертывання. Обе системы находятся в состоянии динамического равновесия. В протнвосвертываюшую систему входят естественные антикоагулянты. Главный из них антитромбин III. Он обеспечивает 70-80% противосвертывающей способности крови. Антитромбин III тормозит активность тромбина и предотвращает свертывание на II фазе. Свое действие он оказывает через гепарин. Это полисахарид, который образует комплекс с антитромбином. После связывания антитромбина с гепарином, данный комплекс становится активным антикоагулянтом. Другими компонентами этой системы являются антитромбопластчны. Это белки С и S, ĸᴏᴛᴏᴩᴏᴇ синтезируются в печени. Οʜᴎ инактивнруют V и VIII плазменные факторы. В мембране эндотелия сосудов имеется белок тромбомодулин, который активирует белок С. Благодаря этому предупреждается возникновение тромбозов. При недостатке этого белка С в крови возникает наклонность к тромбообразованию. Вместе с тем, имеются антагонисты антигемофильных глобулинов А и В.

Факторы, влияющие на свертывание крови.

Нагревание крови ускоряет ферментативный процесс свертывания, охлаждение замедляет его. При механических воздействиях, к примеру встряхивании флакона с кровью, свертывание ускоряется из-за разрушения тромбоцитов. Так как ионы кальция участвуют во всœех фазах свертывания крови, увеличение их концентрации ускоряет, уменьшение замедляет его. Соли лимонной кислоты - цитраты связывают кальций и предупреждают свертывание. По этой причине их используют в качестве консервантов крови. Для лечения заболеваний, при которых повышена свертываемость крови. Используют фармакологические антикоагулянты. Их делят на антикоагулянты прямого и непрямого действия. К первым относятся гепарины, а также белок слюны медицинских пиявок - гирудин. Οʜᴎ непосредственно тормозят фазы свертывания крови. К антикоагулянтам непрямого действия производные кумаровой. кислоты - дикумарин, неодикумарин и др.
Размещено на реф.рф
Οʜᴎ тормозят синтез факторов свертывания в печени. Антикоагулянты применяются при опасности внутрисосудистого свертывания. К примеру, тромбозах сосудов мозга, сердца легких и т.д. Естественными антикоагулянтами являются и компоненты противосвертывающей системы - гепарин, антитромбин III, антитромбопластины, антагонисты антигемофильных глобулинов.

ГРУППЫ КРОВИ. РЕЗУС-ФАКТОР. ПЕРЕЛИВАНИЕ КРОВИ.

В средние века делались неоднократные попытки переливания крови от животных человеку и от человека человеку. При этом практически всœе они заканчивались трагически. Первое удачное переливание человеческой крови пострадавшему произвел 1667 году врач Дени. Причины тяжелых осложнений, возникающих при гемотрансфузиях, первым установил в 1901 году Карл Ландштейнер.
Размещено на реф.рф
Он смешивал капли крови различных людей и обнаружил„что в ряде случаев происходит склеивание эритроцитов - агглютинация и их последующий гемолиз. На основании своих опытов Ландштейнер сделал вывод, что в эритроцитах имеются белки-агглютиногены, способствующие их склеиванию. Он выявил 2 агглютиноге на А и В. На основании их отсутствия или наличия в эритроцитах разделил кровь на I, II и III группы. В -1903 ᴦ. его ученик Адриано Штурли обнаружил IV группу крови. Позже в плазме крови обнаружены белки, которые взаимодействуют с агглютиногенами и вызывают склеивание; эритроцитов. Их назвали агглютининами а и b. Сейчас установлено, что антигенными свойствами обладает мембранный гликопротеид эритроцитов гликофорин. Агглютинины являются иммуноглобулинами М и G, ᴛ.ᴇ. глобулины Агглютиноген А и агглютинин а, также агглютиноген В и агглютинин b называют одноименными. При их взаимодействии происходит склеивание эритроцитов. По этой причине в крови человека находятся, только разноименные агглютиногены и агглютиногены. В крови новорожденных агглютининов нет. При этом затем компоненты пиши, вещества, вырабатываемые микрофлорой кишечника, способствуют синтезу тех агглютининов, которых нет в эритроцитах данного человека. Группы крови системы АВО обозначаются римскими цифрами и дублирующим названием антигена:

I (0) - в эритроцитах нет агглютиногенов, но в плазме содержатся агглютинины а и b.

II (А) -агглютиногены А и агглютинины b.

III (В) - агглютиногены В и агглютинины а.

IV (АВ) - в эритроцитах агглютиногены А и В, агглютининов в плазме нет. Сегодня Н-антиген. Агглютиногены А делятся на подтипы А1 и А2. Первый подтип обнаружено, что в эритроцитах I группы имеется слабый встречается у 80% людей и обладает более выраженными антигенными свойствами. Реакций при переливании между кровью этих подгрупп не происходит. Наследование группы крови осуществляется за счёт генов А, В и О. В хромосомах человека содержится 2 из них. Гены А и В являются доминантными. По этой причине у родителœей со II и III группой крови ребенок может иметь любую из 4-х групп.

У 46% европейцев кровь первой группы, 42% - второй, 9% - третьей и 3% четвертой. В 1940 году К.Ландштейнер и И.Винœер обнаружили в эритроцитах еще один агглютиноген. Впервые он был найден в крови макак-резусов. По этой причине был назван ими резус-фактором. В отличие от антигенной системы АВО, где к агглютиногенами А и В имеются соответствующие агглютинины, агглютининов к резус-антигену в крови нет. Οʜᴎ вырабатываются в том случае, в случае если резус-положительную кровь (содержащую резус-фактор) перелить реципиенту с резус-отрицательной кровью. При первом переливании резус несовместимой крови никакой трансфузионной реакции не будет. При этом в результате сенсибилизации организма реципиента͵ через 3-4 недели в его крови появятся резус-агглютинины. Οʜᴎ очень долгое время сохраняются. По этой причине при повторном переливании резус-положительной крови этому реципиенту произойдет агглютинация и гемолиз эритроцитов донорской крови. Другое отличие этих двух антигенных систем состоит в том, что резус-агглютинины имеют значительно меньшие размеры, чем а и b. По этой причине они могут проникать через плацентарный барьер.
Размещено на реф.рф
В последние недели беременности, во время родов и даже при абортах, эритроциты плода могут попадать в кровяное русло матери. В случае если плод имеет резус-положительную кровь, а мать резус-отрицательную, то попавшие в ее организм с эритроцитами плода резус-антигены вызовут образование резус-агглютининов. Титр резус-агглютининов нарастает медленно, в связи с этим при первой беременности особых осложнений не возникает. В случае если при у повторной беременности плод опять наследует резус-положительную кровь, то поступающие через плаценту резус-агглютинины матери вызовут агглютинацию и гемолиз эритроцитов плода. В легких случаях возникает анемия, гемолитическая желтуха новорожденных. В тяжелых эритробластоз плода и мертворожденность. Это явление принято называть резус-конфликтом. С целью его профилактики сразу после первых подобных родов вводят антирезус-глобулин. Он разрушает резус-положительные эритроциты, попавшие в кровь матери.

Существует 6 разновидностей резус-агглютиногенов: С, D, Е, с, d, е. Наиболее выраженные антигенные свойства у резус-агглютиногена D, Именно им определяется резус-принадлежность крови. Другие антигены этой системы практического значения не имеют.

Сегодня известно около 400 антигенных систем крови. Кроме систем АВО и Rh, известны систем MNSs, Р, Келла, Кидда и другие. Учитывая всœе антигены, число их комбинаций составляет около 3001млн. Но так как их антигенные свойства выражены слабо, для переливания крови их роль незначительна. Переливание несовместимой крови вызывает тяжелœейшее осложнение - гемотрансфузионный шок. Он возникает вследствие того, что склеившиеся эритроциты закупоривают мелкие сосуды. Кровоток нарушается. Далее происходит их гемолиз и из эритроцитов донора в кровь поступают чужеродные белки. В результате резко падает кровяное давление, угнетается дыхание, сердечная деятельность, нарушается работа почек, центральной нервной системы. Переливание даже небольших количеств такой крови может закончиться смертью реципиента. Сегодня допускается переливание только одно-групповой крови по системе АВО. Обязательно учитывается и ее резус-принадлежность. По этой причине перед каждым переливанием обязательно проводится определœение группы и D-антигена крови донора и реципиента. Для определœения групповой принадлежности, каплю исследуемой крови смешивают на предметном стекле с каплей стандартных сывороток I, II и III групп. Таким методом определяются антигенные свойства эритроцитов. В случае если ни в одной из сывороток не произошла агглютинация, следовательно, в эритроцитах агглютиногенов нет. Это кровь I группы. Когда агглютинация наблюдается с сыворотками I и III групп, значит, эритроциты исследуемой крови содержат агглютиноген А. Т.е. это кровь II группы. Агглютинация эритроцитов с сыворотками I и II групп говорит о том, что в них имеется агглютиноген В и эта кровь III группы. В случае если во всœех сыворотках наблюдается агглютинация, значит эритроциты содержат оба антигена А и В. Т.е. кровь IV группы. Желательно проводить исследование и с сывороткой IV группы. Более точно группу крови можно определить с помощью стандартных эритроцитов I, II, III и IV групп. Для этого их смешивают с сывороткой исследуемой крови и определяют содержание в ней агглютининов. Резус принадлежность крови определяют путем ее смешивания, с. сывороткой, содержащей резус-агглютинины.

Кроме этого, чтобы избежать ошибки при определœении группы крови и наличия D-антигена, применяют прямую пробу. Она необходима и для выявления несовместимости крови по другим антигенными признакам. Прямую пробу производят путем смешивания эритроцитов донора с сывороткой реципиента при 37°С. При отрицательных результатах первые порции крови переливаются дробно. Использовавшаяся раньше схема переливания крови разных групп, учитывающая содержание одноименных аглютинонов и агглютиногенов сейчас не применяется. Это связано с тем, что агглютинины донорской крови вызывают агглютинацию и гемолиз эритроцитов реципиента.

Фибринолиз - понятие и виды. Классификация и особенности категории "Фибринолиз" 2017, 2018.

Фибринолитический синдром - геморрагический синдром, вызываемый чрезмерной фибринолитической деятельностью, который может появляться в множестве клинических вариантов. В прошлом его включали в категорию плазматических геморрагических диатезов, но в 1959 г. Sherry индивидуализировал его как самостоятельную нозологическую сущность.

Клиника фибринолитического синдрома . С клинической точки зрения, геморрагический синдром может принимать различные аспекты: эпистаксис, крупные экхимозы с контуром географической карты, гастроинтестинальные кровотечения, геморрагии на местах инъекций или пункций, геморрагии после хирургических вмешательств. Вначале эти явления имеют умеренный характер; с течением времени они станивятся все более тяжелыми, так как к ним присоединяются различные недостатки гемостаза, вызываемые самим развитием фибринолитического процесса; в конце концов геморрагический синдром становится таким тяжелым, что ставит в опасность жизнь больного.

Патофизиология фибринолитического синдрома . Нормальное действие механизма фибринолиза обеспечивается динамическим равновесием между активаторами и ингибиторами. Всякий раз когда преобладают активаторы, нарушение равновесия проявляется клинически как фибринолитический синдром; чем больше несоответствие, тем суровее клинический аспект.

Фибринолиз может выступать как самостоятельное расстройство (первичное) или как последствие простой или диссеминированной внутрисосудистой коагуляции (вторичное). Первичный фибринолиз может происходить по поводу роста активаторов плазминогена (спонтанный) или введения вциркуляцию активаторов для лизирования известных тромбов (терапевтически).

Во всех случаях результатом является высвобождение плазмина, который, благодаря своему литическому действию на фибрин, фибриноген, Ф. V, Ф. VIII вызывает геморрагический синдром, описанный в разделе симптоматологии.

Первичный фибринолиз бывает крайне редко (5%); вторичный встречается гораздо чаще.

Лабораторное исследование для диагностики фибринолитического синдрома . Результаты лабораторных тестов представляют большое разнообразие в зависимости от момента когда они производятся и от типа фибринолиза больного (первичного или вторичного). Ниже мы остановимся на тестах первичного фибринолиза, так как вторичный фибринолиз будет представлен в связи с синдромом ДВС.

Т.Н., РТТ и T.Q. могут быть слегка удлиненными (F.D.P. интерферирует с функцией тромбоцитов и с активностью тромбина, а плазма лизирует Ф. V и VIII). Сгустки проб маленькие (мало фибриногена). TLCE значительно сокращен; чем он короче, тем тяжелее синдром. Тест Аструпа (с пластинками фибрина) позволяет выделять каузальный агент фибринолиза: лизокиназа, активатор, плазмин. TEG представляет характерную трассу, вида теннисной ракеты. Тест выявления FDP позитивный (со степенями от + до + + + +).

Дозировка фибриногена дает тем более низкие цифры, чем сильнее фибринолиз. Остальные тесты на гемостаз и коагуляцию дают нормальные результаты.

Положительный клинический диагноз фибринолитического синдрома основывается на следующем: позднее появление кровотечения, картообразный контур экхимозов, кровотечения на месте инъекций и пункций, маленький и хрупкий сгусток, который высвобождает большое количество эритроцитов (когда синдром тяжелый - кровь теряет способность коагулироваться!).

Лабораторные исследования показывают почти нормальные тесты на коагуляцию наряду с позитивными тестами на фибринолиз, что позволяет ставить несомненный диагноз. Дифференциальная диагностика производится по отношению к остальным геморрагическим диатезам. Обстоятельства, при которых возникают кровотечения и лабораторные результаты выясняют неоспоримо диагноз.

Течение и осложнения фибринолитического синдрома . Фибринолитический синдром может иметь очень разнообразную эволюцию. В рамках такой эволюции хронический и острый фибринолитические синдромы находятся на двух крайностей.


Хронический синдром имеет доброкачественную эволюцию и без осложнений. Он может обостряться по поводу хирургического вмешательства, произведенного без антифибринолитической защиты.

Острый или молниеносный синдром имеет драматичную эволюцию. Смерть может наступать до постановки диагноза и назначения лечения. В диагностицированных и леченных по современным методам случаях получаются благоприятные результаты еще в первые 12 часов.

Лечение фибринолитического синдрома относится к острому синдрому и преследует цель прекращения геморрагического синдрома. В качестве эффективных средств можно использовать:
а) Антифибринолитические, которые пресекают механизм фибринолиза; этого можно добиться двумя способами:
1) Антиплазминовое действие: блокирование плазмина, которое осуществляют антиплазмины или протеазовые ингибиторы, двух типов: ингибитор Kunitz, изготовляемый из поджелудочной железы и выпускаемый в продажу под названием Iniprol и ингибитор Frey, изготовляемый из околоушной слюнной железы и выпускаемый в продажу под названием Trasylol (первый в десять раз более активный чем второй).
2) Антиактивирующее действие: блокирование активации плазминогена в плазмин, которое осуществляют синтетические вещества двух типов: с линейной молекулой (ЕАСА) и циклической молекулой (АМСНА) (последнее в 7 раз более активное чем первое).

б) Субституционные: инъецируемый фибриноген и лиофилизированная антигемофилическая плазма, оба содержащие факторы коагуляции, которые в процессе гиперфибринолиза были лизированы в плазме больного и которые мы замещаем при помощи перфузии.

Схема лечения фибринолитического синдрома : мы начинаем с применения Trasylol 1 000 000 Ед в виде медленной перфузии в течение 24 часов. Через час после начала перфузии Trasylol-ом, инъецируется медленно в.в. ЕАСА в дозе 0,3 г/кг веса тела/день, разделенной на 4 приема (по 1 через 6 часов).

Спустя 2 часа от первой инъекции ЕАСА, инъецируется в.в. фибриноген 2 г и продолжается перфузия одного флакона лиофилизированной антигемофилической плазмы. Обычно за 24 часа эффект лечения оказывается благоприятным, так что его следует прервать; если состояние больного требует этого, мы повторяем на следующий день то же лечение. (Внимание! при вторичном фибринолизе все вышеуказанное лечение должно предшествоваться введением гепарина: 40 000 Ед/день, по 10 000 Ед в.в., через 6 часов в течение 2-3 дней).

В процессе образования гемостатической пробки активируются механизмы направленные на ограничение роста тромба, его растворение и восстановление тока крови. Все это выполняет система фибринолиза. Фибринолизом называется процесс лизиса тромба или сгустка фибрина.

Система фибринолиза состоит состоит из ферментов , неферментативных белковых кофакторов и ингибиторов фибринолиза. Конечной целью этой системы является образование фибринолитического фермента плазмина и разрушение фибринового сгустка. Система в норме оказывает строго локальное действие , т. к. компоненты ее адсорбируются на фибриновых нитях. В систему входит 18 белков и среди них:

1. Плазминоген – профермент, из которого образуется белок плазмин, расщепляющий фибрин. Активируется активаторами плазминогена (PA) и фактором XIIа.

2. Активаторы плазминогена тканевого типа (t-PA , tissue plasminogen activator ) и урокиназный (u-PA , урокиназа , urokinase plasminogen activator ) – ферменты (сериновые протеазы), превращающие плазминоген в плазмин.

  • тканевой активатор плазминогена (t-PA) выделяется эндотелием, моноцитами, мегакариоцитами,
  • урокиназный активатор плазминогена (u-PA) продуцируется эпителиальными клетками почечных протоков, юкстагломерулярными клетками, фибробластами, макрофагами, эндотелиоцитами.

3. Фактор XII (фактор Хагемана) – контактный фактор, активатор плазминогена и прекалликреина.

4. Прекалликреин – контактный фактор, фактор Флетчера, профермент калликреина, катализирующего образование кининов, но для этого должен сначала активироваться фактором Хагемана (ф.XIIа).

5. Высокомолекулярный кининоген (ВМК, фактор Фитцжеральда) – в кровотоке находится в комплексе с фактором XII, является рецептором прекалликреина.

Превращение плазминогена в плазмин

Ключевым ферментом является плазмин , гидролизующий фибрин до растворимых продуктов. Активаторы превращения плазминогена в плазмин образуются сосудистой стенкой (внутренняя активация ) или тканями (внешняя активация ).

Внутренний механизм активации разделяют на Хагеман-зависимый (XIIa-зависимый) и Хагеман-независимый (XIIa-независимый):

  • Хагеман-зависимый фибринолиз происходит под влиянием фактора XIIа, калликреина и высокомолекулярного кининогена (ВМК). Этот путь носит срочный характер и необходим для очистки сосудистого русла от нестабилизированного фибрина, который образуется в процессе внутрисосудистого свертывания крови.
  • Хагеман-независимый фибринолиз осуществляется калликреином и ВМК, но без фактора Хагемана.

Внешний путь активации , доминирующий, осуществляется при участии активаторов плазминогена t-PA и u-PA (урокиназы).

Связывание плазминогена и его активаторов происходит на фибриновом сгустке. Здесь присутствует лизин-связывающий сайт, не­обходимый для активации плазминогена при помощи t-PA, что и обеспечивает локальное образование плазмина.

Регуляция синтеза плазмина из плазминогена

Распад фибрина и фибриногена

Плазмин является очень активной и в то же время относительно неспецифичной сериновой протеазой, которая разрушает фибрин и фибриноген. Образующиеся вследствие этого молекулы, имеющие разную молекулярную массу, обозначаются как продукты деградации фибрина. Ими в основном являются комплексы DDE и D-димеры .

Некоторые продукты деградации обладают выраженной физиологической активностью – они снижают агрегацию тромбоцитов и нарушают полимеризацию фибрин-мономеров, являясь, в сущности, антикоагулянтами .

Реакции фибринолиза

Ингибиторы фибринолиза

Ингибитор активатора плазминогена 1-го типа (РАI-1, рlasminogen activator inhibitor-1 ) – основной ингибитор фибринолиза, синтезируется эндотелием сосудов. Белок специфично ингибирует эффект t-PA и u-РА , препятствуя их взаимодействию с плазминогеном. В свою очередь сам PAI-1 ингибируется протеином С . Таким образом, протеин С не только подавляет коагуляцию (через инактивацию факторов Va и VIIIа), но и усиливает фибринолиз.

α2-Антиплазмин – фермент (сериновая протеаза), быстродействующий ингибитор плазмина. Он мешает плазминогену адсорбироваться на фибрине, снижая количество обра-зующегося плазмина на поверхности сгустка и тем самым резко замедляя фибринолиз.

α2-Макроглобулин – инактивирует тромбин, XIIа и плазмин. Механизм ингибирования заключается в образовании комплекса [α2-макроглобулин-протеаза], который затем переносится в печень.

Активируемый тромбином ингибитор фибринолиза (TAFI , thrombin-activatable fibrinolysis inhibitor , карбоксипептидаза Y), активируется тромбин-тромбомодулиновым комплексом. TAFI разрушает каталитическую поверхность фибрина (лизин-связывающий сайт), необходимую для действия t-PA. Кроме того, в более высокой концентрации TAFI прямо ингибирует плазминоген, что предотвращает преждевременный лизис тромба.