» » Позволяет подавать кровь в систему. Кровообращение. Малый круг кровообращения

Позволяет подавать кровь в систему. Кровообращение. Малый круг кровообращения

Сосуды в организме человека образуют две замкнутые системы кровообращения. Выделяют большой и малый круги кровообращения. Сосуды большого круга снабжают кровью органы, сосуды малого круга обеспечивают газообмен в легких.

Большой круг кровообращения : артериальная (насыщенная кислородом) кровь течет от левого желудочка сердца через аорту, далее по артериям, артериальным капиллярам ко всем органам; от органов венозная кровь (насыщенная углекислым газом) течет по венозным капиллярам в вены, оттуда через верхнюю полую вену (от головы, шеи и рук) и нижнюю полую вену (от туловища и ног) в правое предсердие.

Малый круг кровообращения : венозная кровь течет от правого желудочка сердца через легочную артерию в густую сеть капилляров, оплетающих легочные пузырьки, где кровь насыщается кислородом, далее артериальная кровь течет по легочным венам в левое предсердие. В малом круге кровообращения артериальная кровь течет по венам, венозная - по артериям. Начинается в правом желудочке и оканчивается в левом предсердии. Из правого желудочка выходит легочный ствол, несущий венозную кровь в легкие. Здесь легочные артерии распа­даются на сосуды более мелкого диаметра, переходящие в капилляры. Кровь, насыщенная кислородом, оттекает по четырем легочным венам в левое предсердие.

Кровь движется по сосудам благодаря ритмичной работе сердца. Во время сокращения желудочков кровь под давлением нагнетается в аорту и легочный ствол. Здесь развивается самое высокое давление- 150 мм рт. ст. По мере продвижения крови по артериям давле­ние снижается до 120 мм рт. ст., а в капиллярах - до 22 мм. Самое низкое давление в венах; в крупных венах оно ниже атмосферного.

Кровь из желудочков выбрасывается порциями, а непрерывность ее течения обеспечивается эластич­ностью стенок артерий. В момент сокращения желудоч­ков сердца стенки артерий растягиваются, а затем в силу эластической упругости возвращаются в исходное состояние еще до очередного поступления крови из же­лудочков. Благодаря этому кровь продвигается вперед. Ритмические колебания диаметра артериальных сосу­дов, вызываемые работой сердца, называются пульсом. Он легко прощупывается в местах, где артерии лежат на кости (лучевая, тыльная артерия стопы). Считая пульс, можно определить частоту сердечных сокращений и их силу. У взрослого здорового человека в состоянии покоя частота пульса равна 60-70 ударам в минуту. При раз­личных заболеваниях сердца возможна аритмия - пе­ребои пульса.

С наибольшей скоростью кровь течет в аорте - око­ло 0,5 м/с. В дальнейшем скорость движения падает и в артериях достигает 0,25 м/с, а в капиллярах - прибли­зительно 0,5 мм/с. Медленное течение крови в капилля­рах и большая протяженность последних благоприятст­вуют обмену веществ (общая длина капилляров в орга­низме человека достигает 100 тыс. км, а общая поверх­ность всех капилляров тела - 6300 м 2). Большая раз­ница в скорости течения крови в аорте, капиллярах и венах обусловлена неодинаковой шириной общего сече­ния кровяного русла в его различных участках. Самый узкий такой участок - аорта, а суммарный просвет капилляров в 600-800 раз превышает просвет аорты. Этим объясняется замедление тока крови в капил­лярах.

Движение крови по сосудам регулируется нервно-гуморальными факторами. Импульсы, посылаемые по нервным окончаниям, могут вызывать или сужение, или расширение просвета сосудов. К гладкой мускулатуре стенок сосудов подходят два вида сосудодвигательных нервов: сосудорасширяющие и сосудосуживающие.

Импульсы, идущие по этим нервным волокнам, возника­ют в сосудодвигательном центре продолговатого мозга. При обычном состоянии организма стенки артерий несколько напряжены и их просвет сужен. Из сосудо-двигательного центра по сосудодвигательным нервам непрерывно поступают импульсы, которые и обусловли­вают постоянный тонус. Нервные окончания в стенках сосудов реагируют на изменения давления и химическо­го состава крови, вызывая в них возбуждение. Это возбуждение поступает в центральную нервную систе­му, результатом чего служит рефлекторное изменение деятельности сердечно-сосудистой системы. Таким об­разом, увеличение и уменьшение диаметров сосудов происходит рефлекторным путем, но тот же эффект мо­жет возникнуть и под влиянием гуморальных факто­ров - химических веществ, которые, находятся в крови и поступают сюда с пищей и из различных внутренних органов. Среди них имеют значение сосудорасширя­ющие и сосудосуживающие. Например, гормон гипо­физа - вазопрессин, гормон щитовидной железы - тироксин, гормон надпочечников - адреналин сужива­ют сосуды, усиливают все функции сердца, а гистамин, образующийся в стенках пищеварительного тракта и в любом работающем органе, действует противоположно: расширяет капилляры, не действуя на остальные сосуды. Значительный эффект на работу сердца оказывает изменение содержания в крови калия и каль­ция. Повышение содержания кальция увеличивает частоту и силу сокращений, повышает возбудимость и к проводимость сердца. Калий вызывает прямо противоположное действие.

Расширение и сужение сосудов в различных органах существенно влияет на перераспределение крови в организме. В работающий орган, где сосуды расширены, направляется крови больше, в неработающий орган - \ меньше. Депонирующими органами служат селезенка, печень, подкожная жировая клетчатка.

Это непрерывное движение крови по замкнутой сердечно-сосудистой системе, обеспечивающее обмен газов в легких и тканях тела.

Помимо обеспечения тканей и органов кислородом и удаления из них углекислоты, кровообращение доставляет к клеткам питательные вещества, воду, соли, витамины, гормоны и удаляет конечные продукты обмена веществ, а также поддерживает постоянство температуры тела, обеспечивает гуморальную регуляцию и взаимосвязь органов и систем органов в организме.

Система органов кровообращения состоит из сердца и кровеносных сосудов , пронизывающих все органы и ткани тела.

Кровообращение начинается в тканях, где совершается обмен веществ через стенки капилляров. Кровь, отдавшая кислород органам и тканям, поступает в правую половину сердца и направляется им в малый (легочной) круг кровообращения, где кровь насыщается кислородом, возвращается к сердцу, поступая в левую его половину, и вновь разносится по всему организму (большому кругу кровообращения).

Сердце - главный орган системы кровообращения. Оно представляет собой полый мышечный орган, состоящий из четырех камер: двух предсердий (правого и левого), разделенных межпредсердной перегородкой, и двух желудочков (правого и левого), разделенных межжелудочковой перегородкой. Правое предсердие сообщается с правым желудочком через трехстворчатый, а левое предсердие с левым желудочком - через двустворчатый клапан. Масса сердца взрослого человека в среднем около 250 г у женщин и около 330 г у мужчин. Длина сердца 10-15 см, поперечный размер 8-11 см и переднезадний - 6-8,5 см. Объем сердца у мужчин в среднем равен 700-900 см 3 , а у женщин - 500-600 см 3 .

Наружные стенки сердца образованы сердечной мышцей, которая по структуре сходна с поперечнополосатыми мышцами. Однако сердечная мышца отличается способностью автоматически ритмично сокращаться благодаря импульсам, возникающим в самом сердце независимо от внешних воздействий (автоматия сердца).

Функция сердца состоит в ритмичном нагнетании в артерии крови, приходящей к нему по венам. Сердце сокращается около 70-75 раз в минуту в состоянии покоя организма (1 раз за 0,8 с). Более половины этого времени оно отдыхает - расслабляется. Непрерывная деятельность сердца складывается из циклов, каждый из которых состоит из сокращения (систола) и расслабления (диастола).

Различают три фазы сердечной деятельности:

  • сокращение предсердий - систола предсердий - занимает 0,1 с
  • сокращение желудочков - систола желудочков - занимает 0,3 с
  • общая пауза - диастола (одновременное расслабление предсердий и желудочков) - занимает 0,4 с

Таким образом, в течение всего цикла предсердия работают 0,1 с и отдыхают 0,7 с, желудочки работают 0,3 с и отдыхают 0,5 с. Этим объясняется способность сердечной мышцы работать, не утомляясь, в течение всей жизни. Высокая работоспособность сердечной мышцы обусловлена усиленным кровоснабжением сердца. Примерно 10 % крови, выбрасываемой левым желудочком в аорту, поступает в отходящие от нее артерии, которые питают сердце.

Артерии - кровеносные сосуды, несущие обогащенную кислородом кровь от сердца к органам и тканям (лишь легочная артерия несет венозную кровь).

Стенка артерии представлена тремя слоями: наружной соединительнотканной оболочкой; средней, состоящей из эластических волокон и гладких мышц; внутренней, образованной эндотелием и соединительной тканью.

У человека диаметр артерий колеблется от 0,4 до 2,5 см. Общий объем крови в артериальной системе составляет в среднем 950 мл. Артерии постепенно древовидно ветвятся на все более мелкие сосуды - артериолы, которые переходят в капилляры.

Капилляры (от лат. "капиллюс" - волос) - мельчайшие сосуды (средний диаметр не превышает 0,005 мм, или 5 мкм), пронизывающие органы и ткани животных и человека, имеющих замкнутую кровеносную систему. Они соединяют мелкие артерии - артериолы с мелкими венами - венулами. Через стенки капилляров, состоящие из клеток эндотелия, происходит обмен газов и других веществ между кровью и различными тканями.

Вены - кровеносные сосуды, несущие насыщенную углекислым газом, продуктами обмена веществ, гормонами и другими веществами кровь от тканей и органов к сердцу (исключение легочные вены, несущие артериальную кровь). Стенка вены значительно тоньше и эластичнее стенки артерии. Мелкие и средние вены снабжены клапанами, препятствующими обратному току крови в этих сосудах. У человека объем крови в венозной системе составляет в среднем 3200 мл.

Круги кровообращения

Движение крови по сосудам впервые было описано в 1628 г. английским врачом В. Гарвеем.

У человека и млекопитающих кровь движется по замкнутой сердечно-сосудистой системе, состоящей из большого и малого кругов кровообращения (рис.).

Большой круг начинается от левого желудочка, через аорту разносит кровь по всему телу, в капиллярах отдает тканям кислород, забирает углекислый газ, превращается из артериальной в венозную и по верхней и нижней полым венам возвращается в правое предсердие.

Малый круг кровообращения начинается от правого желудочка, через легочную артерию разносит кровь к легочным капиллярам. Здесь кровь отдает углекислый газ, насыщается кислородом и по легочным венам течет к левому предсердию. Из левого предсердия через левый желудочек кровь вновь поступает в большой круг кровообращения.

Малый круг кровообращения - легочной круг - служит для обогащения крови кислородом в легких. Он начинается от правого желудочка и заканчивается левым предсердием.

Из правого желудочка сердца венозная кровь поступает в легочной ствол (общая легочная артерия), которая вскоре делится на две ветви,- несущие кровь к правому и левому легкому.

В легких артерии разветвляются на капилляры. В капиллярных сетях, оплетающих легочные пузырьки, кровь отдает углекислоту и получает взамен новый запас кислорода (легочное дыхание). Насыщенная кислородом кровь приобретает алый цвет, становится артериальной и поступает из капилляров в вены, которые, слившись в четыре легочные вены (по две с каждой стороны), впадают в левое предсердие сердца. В левом предсердии заканчивается малый (легочный) круг кровообращения, а поступившая в предсердие артериальная кровь переходит через левое атриовентрикулярное отверстие в левый желудочек, где начинается большой круг кровообращения. Следовательно, в артериях малого круга кровообращения течет венозная кровь, а в его венах - артериальная.

Большой круг кровообращения - телесный - собирает венозную кровь от верхней и нижней половины туловища и аналогично распределяет артериальную; начинается от левого желудочка и заканчивается правым предсердием.

Из левого желудочка сердца кровь поступает в самый крупный артериальный сосуд - аорту. Артериальная кровь содержит необходимые для жизнедеятельности организма питательные вещества и кислород и имеет ярко-алый цвет.

Аорта разветвляется на артерии, которые идут ко всем органам и тканям тела и переходят в толще их в артериолы и далее в капилляры. Капилляры в свою очередь собираются в венулы и далее в вены. Через стенку капилляров происходит обмен веществ и газообмен между кровью и тканями тела. Протекающая в капиллярах артериальная кровь отдает питательные вещества и кислород и взамен получает продукты обмена и углекислоту (тканевое дыхание). Вследствие этого поступающая в венозное русло кровь бедна кислородом и богата углекислотой и потому имеет темную окраску - венозная кровь; при кровотечении по цвету крови можно определить, какой сосуд поврежден - артерия или вена. Вены сливаются в два крупных ствола - верхнюю и нижнюю полые вены, которые впадают в правое предсердие сердца. Этим отделом сердца заканчивается большой (телесный) круг кровообращения.

Дополнением к большому кругу является третий (сердечный) круг кровообращения , обслуживающий само сердце. Он начинается выходящими из аорты венечными артериями сердца и заканчивается венами сердца. Последние сливаются в венечный синус, впадающий в правое предсердие, а остальные вены открываются в полость предсердия непосредственно.

Движение крови по сосудам

Любая жидкость течет от места, где давление выше, туда, где оно ниже. Чем больше разность давлений, тем выше скорость течения. Кровь в сосудах большого и малого круга кровообращений также движется благодаря разности давлений, которую создает сердце своими сокращениями.

В левом желудочке и аорте давление крови выше, чем в полых венах (отрицательное давление) и в правом предсердии. Разность давлений в этих участках обеспечивает движение крови в большом круге кровообращения. Высокое давление в правом желудочке и легочной артерии и низкое в легочных венах и левом предсердии обеспечивают движение крови в малом круге кровообращения.

Самое высокое давление в аорте и крупных артериях (артериальное давление). Артериальное кровяное давление не является постоянной величиной [показать]

Кровяное давление - это давление крови на стенки кровеносных сосудов и камер сердца, возникающее в результате сокращения сердца, нагнетающего кровь в сосудистую систему, и сопротивления сосудов. Наиболее важным медицинским и физиологическим показателем состояния кровеносной системы является величина давления в аорте и крупных артериях - артериальное давление.

Артериальное кровяное давление не является постоянной величиной. У здоровых людей в состоянии покоя различают максимальное, или систолическое, давление крови - уровень давления в артериях во время систолы сердца около 120 мм ртутного столба, и минимальное, или диастолическое,- уровень давления в артериях во время диастолы сердца около 80 мм ртутного столба. Т.е. артериальное кровяное давление пульсирует в такт сокращений сердца: в момент систолы оно повышается до 120-130 мм рт. ст., а во время диастолы снижается до 80-90 мм рт. ст. Эти пульсовые колебания давления происходят одновременно с пульсовыми колебаниями артериальной стенки.

По мере продвижения крови по артериям часть энергии давления используется на преодоление трения крови о стенки сосудов, поэтому давление постепенно падает. Особенно значительное падение давления происходит в самых мелких артериях и капиллярах - они оказывают наибольшее сопротивление движению крови. В венах кровяное давление продолжает постепенно снижаться, и в полых венах оно равно атмосферному давлению или даже ниже его. Показатели кровообращения в разных отделах кровеносной системы приведены в табл. 1.

Скорость движения крови зависит не только от разности давлений, но и от ширины кровеносного русла. Хотя аорта - самый широкий сосуд, но в организме она одна и через нее протекает вся кровь, которая выталкивается левым желудочком. Поэтому скорость здесь максимальная - 500 мм/с (см. табл. 1). По мере разветвления артерий их диаметр уменьшается, однако общая площадь поперечного сечения всех артерий возрастает и скорость движения крови уменьшается, достигая в капиллярах 0,5 мм/с. Благодаря столь малой скорости течения крови в капиллярах кровь успевает отдать кислород и питательные вещества тканям и принять продукты их жизнедеятельности.

Замедление тока крови в капиллярах объясняется их огромным количеством (около 40 млрд.) и большим суммарным просветом (в 800 раз больше просвета аорты). Движение крови в капиллярах осуществляется за счет изменения просвета подводящих мелких артерий: их расширение усиливает кровоток в капиллярах, а сужение - уменьшает.

Вены на пути от капилляров по мере приближения к сердцу укрупняются, сливаются, их количество и суммарный просвет кровяного русла уменьшается, а скорость движения крови по сравнению с капиллярами возрастает. Из табл. 1 также видно, что 3/4 всей крови находится в венах. Это связано с тем, что тонкие стенки вен способны легко растягиваться, поэтому они мoгут содержать значительно больше крови, чем соответствующие артерии.

Основной причиной движения крови по венам служит разность давлений в начале и конце венозной системы, поэтому движение крови по венам происходит в направлении к сердцу. Этому способствуют присасывающее действие грудной клетки ("дыхательный насос") и сокращение скелетной мускулатуры ("мышечный насос"). Во время вдоха давление в грудной клетке уменьшается. При этом разность давлений в начале и в конце венозной системы увеличивается, и кровь по венам направляется к сердцу. Скелетные мышцы, сокращаясь, сжимают вены, что также способствует передвижению крови к сердцу.

Соотношение между скоростью движения крови, шириной кровеносного русла и давлением крови иллюстрирует рис. 3. Количество крови, протекающее за единицу времени через сосуды, равно произведению скорости движения крови на площадь поперечного сечения сосудов. Эта величина одинакова для всех частей кровеносной системы: сколько крови выталкивает сердце в аорту, столько ее протекает через артерии, капилляры и вены и столько же возвращается назад к сердцу, и равна минутному объему крови.

Перераспределение крови в организме

Если артерия, отходящая от аорты к какому-нибудь органу, благодаря расслаблению своих гладких мышц расширится, то орган будет получать больше крови. В то же время другие органы получат за счет этого меньше крови. Так происходит перераспределение крови в организме. Вследствие перераспределения к работающим органам притекает больше крови за счет органов, которые в данное время пребывают в покое.

Перераспределение крови регулируется нервной системой: одновременно с расширением сосудов в работающих органах кровеносные сосуды неработающих суживаются и артериальное давление остается неизменным. Но если расширятся все артерии, это приведет к падению артериального давления и к уменьшению скорости движения крови в сосудах.

Время кругооборота крови

Время кругооборота крови - это время, необходимое для того, чтобы кровь прошла через весь круг кровообращения. Для измерения времени кругооборота крови применяется ряд способов [показать]

Принцип измерения времени кругооборота крови заключается в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны или вызывает характерное для него действие. Например, в локтевую вену вводят раствор алкалоида лобелина, действующего через кровь на дыхательный центр продолговатого мозга, и определяют время от момента введения вещества до момента, когда появляется кратковременная задержка дыхания или кашель. Это происходит, когда молекулы лобелина, совершив кругооборот в кровеносной системе, подействуют на дыхательный центр и вызовут изменение дыхания или кашель.

В последние годы скорость кругооборота крови по обоим кругам кровообращения (или только по малому, или только по большому кругу) определяют с помощью радиоактивного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудев и в области сердца. После введения в локтевую вену радиоактивного изотопа натрия определяют время появления радиоактивного излучения в области сердца и исследуемых сосудов.

Время кругооборота крови у человека составляет в среднем примерно 27 систол сердца. При 70-80 сокращениях сердца в минуту полный кругооборот крови происходит приблизительно за 20-23 секунды. Не надо забывать, однако, что скорость течения крови по оси сосуда больше, чем у его стенок, а также, что не все сосудистые области имеют одинаковую протяженность. Поэтому не вся кровь совершает кругооборот так быстро, и указанное выше время является кратчайшим.

Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на малый круг кровообращения и 4/5 - на большой круг.

Регуляция кровообращения

Иннервация сердца . Сердце, как и другие внутренние органы, иннервируетея вегетативной нервной системой и получает двойную иннервацию. К сердцу подходят симпатические нервы, которые усиливают и ускоряют его сокращения. Вторая группа нервов - парасимпатические - действует на сердце противоположным образом: замедляет и ослабляет сердечные сокращения. Эти нервы регулируют работу сердца.

Кроме того, на работу сердца влияет гормон надпочечников - адреналин, который с кровью поступает в сердце и усиливает его сокращения. Регуляция работы органов с помощью веществ, переносимых кровью, называется гуморальной.

Нервная и гуморальная регуляции сердца в организме действуют согласованно и обеспечивают точное приспособление деятельности сердечно-сосудистой системы к потребностям организма и условиям окружающей среды.

Иннервация кровеносных сосудов. Кровеносные сосуды иниервируются симпатическими нервами. Возбуждение, распространяющееся по ним, вызывает сокращение гладких мышц в стенках сосудов и суживает сосуды. Если перерезать симпатические нервы, идущие к определенной части тела, соответствующие сосуды расширятся. Следовательно, по симпатическим нервам к кровеносным сосудам все время поступает возбуждение, которое держит эти сосуды в состоянии некоторого сужения - сосудистого тонуса. Когда возбуждение усилнвается, частота нервных импульсов возрастает и сосуды суживаются сильнее - сосудистый тонус повышается. Наоборот, при уменьшении частоты нервных импульсов вследствие торможения симпатических нейронов сосудистый тонус снижается и кровеносные сосуды расширяются. К сосудам некоторых органов (скелетных мышц, слюнных желез) кроме сосудосуживающих подходят также сосудорасширяющие нервы. Эти нервы возбуждаются и расширяют кровеносные сосуды органов во время их работы. На просвет сосудов влияют также вещества, которые разносятся кровью. Адреналин суживает кровеносные сосуды. Другое вещество - ацетилхолин, - выделяемое окончаниями некоторых нервов, расширяет их.

Регуляция деятельности сердечно-сосудистой системы. Кровоснабжение органов изменяется в зависимости от их потребностей благодаря описанному перераспределению крови. Но это перераспределение может быть эффективным только при условии, что давление в артериях не изменяется. Одной из основных функций нервной регуляции кровообращения является поддержание постоянного кровяного давления. Эта функция осуществляется рефлекторно.

В стенке аорты и сонных артерий имеются рецепторы, которые раздражаются сильнее, если кровяное давление превышает нормальный уровень. Возбуждение от этих рецепторов идет к сосудодвигательному центру, расположенному в продолговатом мозге, и тормозит его работу. От центра по симпатическим нервам к сосудам и сердцу начинает поступать более слабое возбуждение, чем раньше, и кровеносные сосуды расширяются, а сердце ослабляет свою работу. Вследствие этих изменений кровяное давление снижается. А если давление почему-либо упало ниже нормы, то раздражение рецепторов прекращается совсем и сосудо-двигательный центр, не получая тормозных влияний от рецепторов, усиливает свою деятельность: посылает к сердцу и сосудам больше нервных импульсов в секунду, сосуды суживаются, сердце сокращается, чаще и сильнее, кровяное давление повышается.

Гигиена сердечной деятельности

Нормальная деятельность человеческого организма возможна лишь при наличии хорошо развитой сердечно-сосудистой системы. Скорость кровотока будет определять степень кровоснабжения органов и тканей и скорость удаления продуктов жизнедеятельности. При физической работе потребность органов в кислороде возрастает одновременно с усилением и учащением сердечных сокращений. Такую работу может обеспечить только сильная сердечная мышца. Чтобы быть выносливым к разнообразной трудовой деятельности, важно тренировать сердце, увеличивать силу его мышцы.

Физический труд, физкультура развивают сердечную мышцу. Для обеспечения нормальной функции сердечно-сосудистой системы человек должен начинать свой день с утренней зарядки, особенно люди, профессии которых не связаны с физическим трудом. Для обогащения крови кислородом физические упражнения лучше выполнять на свежем воздухе.

Необходимо помнить, что чрезмерные физические и психические напряжения могут вызвать нарушение нормальной работы сердца, его заболевания. Особенно вредное влияние на сердечно-сосудистую систему оказывают алкоголь, никотин, наркотики. Алкоголь и никотин отравляют сердечную мышцу и нервную систему, вызывают резкие нарушения регуляции сосудистого тонуса и деятельности сердца. Они ведут к развитию тяжелых заболеваний сердечно-сосудистой системы и могут стать причиной внезапной смерти. У курящих и употребляющих алкоголь молодых людей чаще, чем у других, возникают спазмы сосудов сердца, вызывающие тяжелые сердечные приступы, иногда и смерть.

Первая помощь при ранениях и кровотечениях

Травмы часто сопровождаются кровотечением. Различают капиллярное, венозное и артериальное кровотечения.

Капиллярное кровотечение возникает даже при незначительном ранении и сопровождается медленным вытеканием крови из раны. Такую рану следует обработать раствором бриллиантового зеленого (зеленкой) для обеззараживания и наложить чистую марлевую повязку. Повязка останавливает кровотечение, способствует образованию тромба и не дает возможности микробам попасть в рану.

Венозное кровотечение характеризуется значительно большей скоростью вытекания крови. Вытекающая кровь имеет темный цвет. Для остановки кровотечения необходимо наложить тугую повязку ниже раны, т. е. дальше от сердца. После остановки кровотечения рану обрабатывают дезинфицирующим средством (3% р-р перекиси водорода, водка), перевязывают стерильной давящей повязкой.

При артериальном кровотечении из раны фонтанирует алая кровь. Это наиболее опасное кровотечение. При повреждении артерии конечности нужно поднять конечность как можно выше, согнуть ее и прижать пальцем раненную артерию в том месте, где она близко подходит к поверхности тела. Необходимо также выше места ранения, т. е. ближе к сердцу, наложить резиновый жгут (можно использовать для этого бинт, веревку) и туго его затянуть, чтобы полностью остановить кровотечение. Жгут нельзя держать затянутым более 2 ч. При его наложении необходимо прикрепить записку, в которой следует указать время наложения жгута.

Следует помнить, что венозное, а еще в большей степени артериальное кровотечение может привести к значительной потере крови и даже к смерти. Поэтому при ранении необходимо как можно скорее остановить кровотечение, а затем доставить пострадавшего в больницу. Сильная боль или испуг могут привести к тому, что человек потеряет сознание. Потеря сознания (обморок) является следствием торможения сосудодвигательного центра, падения кровяного давления и недостаточного снабжения головного мозга кровью. Потерявшему сознание необходимо дать понюхать какое-нибудь нетоксичное с сильным запахом вещество (например, нашатырный спирт), смочить лицо холодной водой или слегка похлопать его по щекам. При раздражении обонятельных или кожных рецепторов возбуждение от них поступает в головной мозг и снимает торможение сосудодвигательного центра. Кровяное давление повышается, головной мозг получает достаточное питание, и сознание возвращается.

В нашем организме кровь непрерывно движется по замкнутой системе сосудов в строго определенном направлении. Это непрерывное движение крови называется кровообращением . Кровеносная система человека замкнутая и имеет 2 круга кровообращения: большой и малый. Основным органом, обеспечивающим движение крови, является сердце.

Кровеносная система состоит из сердца и сосудов . Сосуды бывают трех типов: артерии, вены, капилляры.

Сердце – полый мышечный орган (масса около 300 грамм) размером приблизительно с кулак, расположен в грудной полости слева. Сердце окружено околосердечной сумкой, образованной соединительной тканью. Между сердцем и околосердечной сумкой находится жидкость, уменьшающая трение. У человека четырехкамерное сердце. Поперечная перегородка делит его на левую и правую половину, каждая из которых разделена клапанами ни предсердие и желудочек. Стенки предсердий тоньше, чем стенки желудочков. Стенки левого желудочка толще, чем стенки правого, так как он совершает большую работу, выталкивая кровь в большой круг кровообращения. На границе между предсердиями и желудочками находятся створчатые клапаны, которые препятствуют обратному току крови.

Сердце окружено околосердечной сумкой (перикардом). Левое предсердие отделено от левого желудочка двустворчатым клапаном, а правое предсердие от правого желудочка – трехстворчатым клапаном.

К створкам клапанов со стороны желудочков прикреплены прочные сухожильные нити. Такая их конструкция не позволяет крови двигаться из желудочков в предсердие при сокращении желудочка. У основания легочной артерии и аорты находятся полулунные клапаны, не позволяющие крови поступать из артерий обратно в желудочки.

В правое предсердие поступает венозная кровь из большого круга кровообращения, в левое – артериальная из легких. Так как левый желудочек снабжает кровью все органы большого круга кровообращения, в левое – артериальная из легких. Так как левый желудочек снабжает кровью все органы большого круга кровообращения, то его стенки примерно в три раза толще стенок правого желудочка. Сердечная мышца представляет собой особый вид поперечно-полосатой мышцы, в котором мышечные волокна срастаются между собой концами и образуют сложную сеть. Такое строение мышцы увеличивает ее прочность и ускоряет прохождение нервного импульса (вся мышца реагирует одновременно). Сердечная мышца отличается от скелетных мышц способностью ритмично сокращаться, отвечая на импульсы, возникающие в самом сердце. Это явление называется автоматией.

Артерии – сосуды, по которым кровь движется от сердца. Артерии – это толстостенные сосуды, средний слой которых представлен эластичными и гладкой мускулатурой, поэтому артерии способны выдержать значительное давление крови и не разрываться, а только растягиваться.

Гладкая мускулатура артерий выполняет не только структурную роль, но ее сокращения способствуют быстрейшему току крови, так как мощности только одного сердца не хватило бы для нормальной циркуляции крови. Внутри артерий нет никаких клапанов, кровь течет быстро.

Вены – сосуды, несущие кровь к сердцу. В стенках вен также есть клапаны, препятствующие обратному току крови.

Вены, более тонкостенные, чем артерии, и в среднем слое меньше эластичных волокон и мышечных элементов.

Кровь по венам течет не совсем пассивно, окружающие мышцы совершают пульсирующие движения и прогоняют кровь по сосудам к сердцу. Капилляры – самые мелкие кровеносные сосуды, через них плазма крови обменивается с тканевой жидкостью питательными веществами. Стенка капилляров состоит из одного слоя плоских клеток. В мембранах этих клеток имеются многочленные мельчайшие отверстия, которые облегчают прохождение через стенку капилляров веществ, участвующих в обмене.

Движение крови
происходит по двум кругам кровообращения.

Большой круг кровообращения – это путь крови от левого желудочка до правого предсердия: левый желудочек аорта грудная аорта брюшная аорта артерии капилляры в органах (газообмен в тканях) вены верхняя (нижняя) полая вена правое предсердие

Малый круг кровообращения – путь от правого желудочка до левого предсердия: правый желудочек легочный ствол артерии правая (левая) легочная капилляры в легких газообмен в легких легочные вены левое предсердие

В малом круге кровообращения по легочным артериям движется венозная кровь, а по легочным венам после газообмена в легких – артериальная кровь.

Ведущие специалисты в области гематологии

Редактор страницы : Крючкова Оксана Александровна — врач-травматолог-ортопед

Профессор Шатохин Юрий Васильевич

ДМН, Зав. кафедрой гематологии РостГМУ.

Переливание крови оказывает сложное и многогранное влияние на жизненные функции организма больного.

В настоящее время изучены многие стороны действия этого весьма эффективного метода терапии, причем прежние представления о гемотрансфузии как о простом замещении потерянной массы крови или способе «раздражения» различных функций организма в значительной степени изменены и дополнены данными клинических наблюдений и экспериментальных исследований.

Кроме того, в известной степени изучены особенности действия различных методов переливания крови, и, таким образом, клиницисты получили возможность более целеустремленно и индивидуально направленно применять те или другие способы гемотрансфузии, с учетом характера заболевания и особенностей реактивности больного.

Вместе с тем необходимо отметить, что до самого последнего времени в трактовке различных сторон

действия трансфузии крови преобладали гуморальные теории, объясняющие не всю совокупность влияния гемотрансфузий на организм больного, а лишь отдельные изменения, происходящие после этого сложного лечебного мероприятия.

Наиболее распространенной и принятой большинством (авторов являлась гипотеза коллоидоклазии, предложенная А. А. Богомольцем. Эта гипотеза была выдвинута А. А. Богомольцем после большого количества экспериментальных и клинических наблюдений, проведенных главным образом в Центральном институте гематологии и переливания крови.

Согласно этой гипотезе, вследствие индивидуальной несовместимости белков крови донора и реципиента при гемотрансфузии в организме реципиента происходит сложный биологический процесс коллоидоклазии, который является основой стимулирующего действия перелитой крови. В связи со старением клеточных биоколлоидов - процессом, весьма распространенном при ряде патологических состояний, -наблюдается уплотнение и уменьшение их дисперсности, обезвоживание клеток и понижение внутриклеточного обмена. При этом отмечается резкое укрупнение белковых молекул клеточной протоплазмы, появление в ней различных включений, пигментных частиц, продуктов дегенерации.

Переливание крови по А. А. Богомольцу приводит к осаждению белковых мицелл плазмы крови реципиента и их последующему ферментативному расщеплению. Этот процесс распространяется и на клеточную протоплазму, в результате чего происходит освобождение ее от «балластных» элементов, повышение обмена веществ, улучшение процесса регенерации.

Важную роль в механизме стимулирующего действия трансфузии отводится А. А. Богомольцем ретикуло- эндотелиалыной системе.

Необходимо отметить, что А. А. Богомолец так называемую «активную мезенхиму» или «физиологическую систему соединительной ткани» рассматривал в отрыве от нервной системы, придавая ей автономное значение. Совершенно очевидно, что этот взгляд не соответствует современным представлениям и, естественно, подвергся резкой критике.

Многими экспериментально-клиническими исследованиями со всей убедительностью показано, что после переливания крови отчетливо выступает стимуляция деятельности органов и систем организма больного.

А. А. Багдасаров в экспериментальных исследованиях отмечал после переливания крови увеличение резервной щелочности крови в печеночной и воротной венах и уменьшение ее в артериях, что было, видимо, связано с усилением обмена веществ. К таким же выводам пришла Н. Л. Стоцик, которая обнаружила нарастание количества нейтрального жира в печеночной вене в посттрансфузионном периоде, что свидетельствует о мобилизации жировых запасов печени.

В ранних исследованиях А. А. Багдасарова, X. X. Владоса, М. С. Дульцина, И. А. Леонтьева, Н. Б. Медведевой,

Е. А. Тузлуковой, Н. Д. Юдиной и И. И. Юровской (1939) приводятся клинические наблюдения многочисленной группы больных после переливания крови. Авторы выделяют два типа ответной реакции на гемотрансфузию. При первом типе (25% больных) имеет место нарастание общего азота и белка сыворотки, а также уменьшение белкового коэфициента. Остаточный азот не изменяется, содержание хлоридов в крови несколько уменьшается, а количество калия в сыворотке увеличивается.

У больных второй группы (75%) отмечается уменьшение белков сыворотки (главным образом глобулинов), повышение белкового коэфициента, остаточного азота, падение хлоридов крови. Этот тип реакции в то время (1939) авторы рассматривали как одно из проявлений индивидуальной несовместимости белков крови донора и реципиента.

В дальнейших исследованиях учеников А. А. Богомольца было показано, что процесс коллоидоклазии наблюдается после переливания крови во всех органах и тканях, но бывает более выражен в тех органах, которые наиболее подвержены патологическим изменениям (А. А. Багдасаров, И. А. Леонтьев, Н. А. Федоров и др.).

Работы А. А. Богомольца и его учеников явились первыми глубокими исследованиями механизма действия переливания крови. Они сыграли положительную роль в развитии учения о переливании крови, так как позволили установить ряд новых фактов, объясняли многие неясные стороны стимулирующего влияния гемотрансфузий, повышали интерес к данной проблеме и послужили основой для дальнейших исследований.

Объединенная сессия Академии наук СССР и Академии медицинских наук СССР,

посвяшенная проблемам физиологического учения И. П. Павлова, ознаменовала начало нового, высшего этапа в развитии советской медицины и в том числе гематологии и переливания крови. Прошедшие в дальнейшем научные дискуссии по различным актуальным проблемам медицины сыграли также большую роль в мобилизации усилий ученых и врачей- практиков для критического рассмотрения и проверки основных положений теории переливания крови.

В этом направлении на расширенных пленумах и ученых советах Центрального института гематологии и переливания крови была проведена большая работа по творческому пересмотру гипотезы коллоидоклазии, Научная дискуссия в отношении этой гипотезы проводилась на базе нового фактического материала и учения И. П. Павлова о целостности организма и доминирующей роли центральной нервной системы, регулирующей все функции организма.

В своих выступлениях А. А. Багдасаров, Н. А. Федоров, П. С. Васильев, И. И. Федоров, И. Р. Петров и др. подвергли резкой критике важнейшие положения гипотезы коллоидоклазии. В корне ошибочными и механистическими признаны представления А. А. Богомольца о том, что основой реакции на переливание крови является встреча белковых систем донора и реципиента, что все посттрансфузионные процессы обусловлены лишь физико-химическими изменениями.

Многочисленными исследованиями большого числа авторов со всей наглядностью показано,

что после переливания крови действительно имеют место белковые коллоидные структурные изменения и что это одна из наиболее ранних реакций организма, однако сущность вопроса заключается в том, как понимать механизм этих изменений.

Н. А. Федоров и П. С. Васильев справедливо- указывали, что если белковые изменения являются результатом непосредственного взаимодействия коллоидов, то тогда, естественно, их можно уловить вне организма, т. е. при смешивании крови донора и реципиента in vitro. Однако в этих условиях коллоидно-структурных изменений обнаружить не удалось (П. С. Васильев, В. В. Суздалева).

Отсюда со всей очевидностью вытекает, что эти изменения опосредованы целостным организмом при решающей роли нервной системы и прежде всего ее центральных отделов - коры головного мозга и подкорковых рецепторов.

За последнее время Н. А. Федоров и его сотрудники (А. М. Намятышева, И. И. Зарецкий, Н. А. Мессинева, В. М. Родионов, Б. М. Ходоров) получили новые экспериментальные фактические данные, убеждающие в том, что посттрансфузионные белковые изменения представляют собой лишь частное проявление активации процессов обмена между кровью и тканями.

Было доказано, что количественные и качественные изменения белков крови связаны с мобилизацией резервных мелкодисперсных белков тканей

Альбуминов и с усилением поступления их в кровоток. Наиболее интенсивно этот процесс происходит в тканях печени и кишечника, где, как известно, скапливается большое количество резервных белков.

Одновременно с изменением белкового обмена происходят изменения и других вегетативных функций.

Твердо установлено, что значительным постгрансфузионным изменениям подвергаются водно-солевой, углеводный и основной обмены, терморегуляция и иммунобиологическое состояние организма. Н. А. Федорову и его сотрудникам со всей наглядностью удалось показать, что все эти вегетативные изменения после переливания крови непосредственно связаны с изменением функционального состояния высших отделов центральной нервной системы -. коры и подкорки. Авторы отмечали, что под действием перелитой крови изменяется условно-рефлекторная деятельность. Степень и характер изменений условно-рефлекторной деятельности зависят от типа высшей нервной деятельности.

Весьма показательным является тот факт, что изменение и восстановление условно-рефлекторной деятельности протекают параллельно с изменением и восстановлением вегетативных функций организма (белкового, водно-солевого, углеводного, основного обмена и др.).

Так, в экспериментах И. И. Федорова в изолированные вены конечностей животного вводилась чужеродная кровь,

что вызывало резкое падение кровяного давления и другие симптомы посттрансфузионного шока. Предварительное введение новокаина в данную область предупреждало появление шока. Результаты этих опытов не укладываются в основные положения коллоидоклазическои гипотезы А. А. Богомольца, а, наоборот, убеждают в нервно-рефлекторной природе реакций организма на переливание крови.

Клинические наблюдения также не подтверждают мнения А. А. Богомольца о том, что посттрансфузионные реакции зависят от индивидуальной несовместимости белков крови донора и реципиента. Опыт показал, что большинство клинически выраженных реакций возникает не в связи с индивидуальной несовместимостью крови, а в результате недочетов при заготовке и переливании крови, отсутствия учета противопоказаний к гемотрансфузии и других моментов.

Можно было бы привести еще много фактов, дающих основание для критики гипотезы А. А. Богомольца и его трактовки наблюдений, полученных при гемотрансфузиях. Все они подтверждают мнение о необходимости разработки новых путей для выявления механизма действия гемотрансфузий.

В настоящее время процесс пересмотра механизма действия переливаний крови еще не закончен,

но и теперь уже накопилось достаточно много фактов, позволяющих по-новому рассматривать как отдельные стороны действия гемотрансфузий, так и весь комплекс изменений, происходящих в организме больного.

Всеми признается, что переливания крови вызывают в организме реципиента сложный, но единый по своей направленности биологический процесс; все звенья этого процесса тесно связаны между собой. И естественно поэтому, что замещающее, стимулирующее, гемостатическое, антитоксическое и иммунобиологическое действие перелитой крови нельзя рассматривать в отрыве друг от друга.

При каждом переливании крови на организм больного воздействует сумма перечисленных и многих еще не изученных факторов, причем в различных случаях один иди несколько из них оказывают большее влияние, чем другие. Эти особенности и варианты действия гемотрансфузий зависят от многих причин, среди которых имеют весьма существенное значение: исходное состояние больного организма, доза, скорость переливания, методика трансфузии, температура переливаемой крови, качество и индивидуальный состав крови донора и другие моменты.

Этими факторами определяются характер реакции организма и окончательные результаты гемотрансфузии,

Они должны строго учитываться при определении показаний к различным методам переливания крови.

При рассмотрении механизма действия переливания крови необходимо учитывать все эти условия и методики гемотрансфузий. В качестве различных вариантов действия гемотрансфузий в хирургической клинике можно привести следующие примеры.

На основании наших наблюдений, при шоке без кровопотери введенная в вену или артерию кровь оказывает мощное тонизирующее действие на центральную нервную систему, причем эффект этого действия заметен даже при трансфузии небольших количеств крови (например, при капельной методике оно отмечается уже в первые минуты), что можно объяснить, в частности, воздействием переливаемой крови на интерорецепторы сосудистой системы. При этом не исключается возможность и непосредственного влияния на высшие нервные центры.

При массивной кровопотере эти рефлекторные и автоматические влияния гемотрансфузии также имеют место (Н. И. Блинов). Важно отметить, что в данных случаях отчетливо выступает перераспределение депонированной крови. Вскоре после введения большого количества крови улучшается деятельность анемизированного головного мозга, а затем наступает стимуляция всех функций организма.

И в первом, и во втором примерах отмечена преимущественная роль одного из факторов механизма переливания крови: в одном случае преобладание стимулирующего, в другом - заместительного действия. Однако, помимо этого, в обоих случаях, может быть в меньшей степени, проявляются и другие стороны влияния гемотрансфузии - гемостатический эффект, дезинтоксикация и др.

Таким образом, при анализе результата гемотрансфузии приходится в некоторой степени

схематично рассматривать отдельные явления и фиксировать внимание на ведущих в данном случае элементах действия переливаний, из которых составляется целостное представление об общем действии этого лечебного мероприятия.

Общепринято в виде рабочей схемы выделять следующие стороны действия гемотрансфузий: 1) заместительную (субституирующую), 2) «раздражающую» (стимулирующую), 3) кровоостанавливающую (гемостатическую), 4) обезвреживающую яды (дезинтоксикационную). Некоторые авторы отмечают также иммунобиологическое действие и другие моменты.

Анализ результатов гемотрансфузии при ее использовании в хирургической клинике показывает большое значение всех перечисленных сторон действия этого метода. Поэтому целесообразно изложить их в отдельности более подробно.

ДЕЙСТВИЕ ПЕРЕЛИВАНИЙ КРОВИ НА ОРГАНИЗМ БОЛЬНОГО. Заместительное действие трансфузий

В хирургической клинике весьма часто приходится применять гемотрансфузию для целей замещения при кровопотере, что особенно заметно проявляется при введении больших количеств крови (свыше 500 мл). Такие переливания крови принято называть заместительными.

Это действие складывается из ряда моментов. Прежде всего перелитая кровь пополняет общую массу циркулирующей крови больного. Кровь в отличие от всех кровозамещающих растворов сравнительно длительные сроки остается в русле крови больного и тем самым улучшает гемодинамику при крово- и плазмопотере. Этим обстоятельством в значительной степени объясняются факты быстрого повышения артериального давления в процессе и особенно после переливания крови. При этом отмечается устранение явлений цианоза, улучшение слышимости тонов сердца и других симптомов нарушения деятельности сердечно-сосудистой системы.

При длительном капельном переливании массивных доз крови повышение артериального давления происходит медленно и постепенно, что является более физиологичным по сравнению с быстрым повышением давления при ускоренном введении больших количеств крови.

Таким образом, скорость введения крови нужно отнести к важным моментам в механизме действия массивных трансфузий, что должно учитываться при каждом переливании. Необходимо подчеркнуть, что при угрожающей жизни кровопотере требуется внутривенное переливание 1-2-3 л крови за сравнительно небольшие сроки (1-2 часа).

Наоборот, при нервно-рефлекторном травматическом шоке необходимо вводить несколько меньшие дозы крови

(500-750 мл) и обязательно капельным путем, для того чтобы не вызвать быстрого подъема артериального давления, перегрузки сердечно-сосудистой системы, главным образом малого круга кровообращения, и последующего рецидива шока.

Последние данные В. Г. Чистякова и С. И. Стыскина, исследовавших артериальное и венозное давление во время крупных внутригрудных операций, свидетельствуют о том, что в ряде случаев в конце операции происходит повышение венозного давления, что может усугубляться массивным введением крови. Наши наблюдения говорят о том, что массивное введение крови в отдельных случаях может привести к перегрузке венозного сосудистого русла даже при капельном, постепенном переливании.

Аналогичные явления перегрузки венозного сосудистого русла и правой половины сердца после гемотрансфузии мы наблюдали еще у 2 больных. Сравнительная редкость подобных нарушений после гемотрансфузий может быть объяснена преимущественным использованием капельного метода в случаях массивных введений крови. При капельном переливании наблюдается компенсаторное вытеснение плазмы из русла крови в ткани. Это явление особенно выражено при тяжелой хронической анемии, где перелитая даже в больших дозах кровь не намного увеличивает общий объем циркулирующей крови. Показатель объема эритроцитов по гематокриту после введения 2-3 л крови повышался у этих больных вдвое. Наряду с этим, отмечалось увеличение -сухого -остатка цельной крови больного и несколько менее заметно уве-

Рис. 57. Больной И. Рак легкого. Переливание крови во время операции.

личивался сухой остаток сыворотки (наши исследования, 1937).

Последнее говорит о том, что плазма донорской крови в значительной своей части поступает из русла крови реципиента в ткани, а глобулярная масса остается в циркулирующей крови (Б. В. Петровский, Мариотт и др.). Такие же данные получены Б. Ю. Андриевским и И. А. Леонтьевым при переливании крови в эксперименте (1935); согласно их наблюдениям, при кровопотере переливание крови обогащает плазму белками на короткий срок. Через 15 минут количество белка постепенно уменьшается и становится даже ниже нормы.

Эшби переливал кровь 0(1) группы больным, имеющим группы А(II), В(III) и AB(IV). Затем он смешивал небольшое количество крови больного е сывороткой 0(1) группы, при этом происходила агглютинация эритроцитов больного [А(II), В(III) или AB(IV)].

При подсчете неагглютинированных эритроцитов донора группы 0(1) представлялась известная возможность

установить сроки длительности их жизни в сосудистой системе реципиента. В дальнейшем методика Эшби была признана несовершенной и в значительной мере изменена (В. Воронов, Г. М. Гуревич, Д. К. Рабинович и др.).

Определение жизнеспособности перелитых эритроцитов по Шиффу предусматривает использование сывороток анти-М и анти-N. Существуют также методики определения длительности жизни эритроцитов при переливании крови, основанные на исследовании способности крови поглощать кислород. Однако данные способы не могут показать, за счет чего увеличилась эта способность - за счет ли перелитых эритроцитов или за счет поступления крови из Депо, или стимуляции кроветворения реципиента как следствия трансфузии.

В настоящее время более точным способом признается методика определения количества перелитых эритроцитов путем использования изотопов. Эта методика широко применяется в Центральном институте переливания крови.

На основании многочисленных исследований жизнеспособности перелитых эритроцитов получены разнообразные данные. По Эшби, эритроциты перелитой крови продолжают циркулировать в русле реципиента в течение 113 суток, по Гольцу -42 дня, по Воронову - 60 дней и по данным Центрального ордена Ленина института гематологии и переливания крови - 30 дней.

Разнообразие этих сроков свидетельствует о неточности применявшихся ранее методов определения жизнеспособности перелитых эритроцитов.

Однако даже минимальные цифры (30 дней) вполне достаточны для того, чтобы сделать вывод о- стойком увеличении дыхательной поверхности крови в случаях применения гемотрансфузии.

Несомненно, что это улучшение газообмена после переливания крови прежде всего сказывается на улучшении деятельности центральных отделов нервной системы. Благотворное влияние переливаний крови на центральную нервную систему особенно заметно при остром и хроническом малокровии. Старый способ так называемой аутотрансфузии, не потерявший своей ценности и в настоящее время, состоит в бинтовании четырех конечностей эластическими бинтами в целях вытеснения из них крови и уменьшения общего круга кровообращения. С помощью этого способа в первые минуты тяжелой кровопотери удается бороться с опасными последствиями анемии мозга. Для улучшения кровоснабжения головного мозга при применении этого способа рекомендуется опускать голову больного ниже туловища (приподнимая ножной конец кровати).

Эти мероприятия, несомненно, следует признать эффективными. Их положительное действие подтверждает необходимость при кровопотере быстро доставить кровь сосудам центральной нервной системы - головному мозгу. В целях выяснения механизма действия трансфузии крови на центральную нервную систему производился ряд экспериментальных и клинических исследований (И. Р. Петров, В. А. Негевский и др.).

В нашей клинике в 1950 г. были произведены опыты по экспериментальному переливанию крови в общую сонную артерию по направлению к мозгу (Д. Франк).

Во всех случаях на артериограмме было видно, что кровь, смешанная с контрастным веществом, заполняет всю сосудистую сеть мозга. При этом в ряде случаев таким способом удавалось оживлять животных, спустя 3, 4 и 5 минут после остановки сокращений сердца, возникшей вследствие массивной кровопотери.

Наши клинические наблюдения во время Великой Отечественной войны 1941 -1945 гг. также показывают, что при агонии вследствие кровопотери переливание крови в периферический отдел обшей сонной артерии, разорванной снарядом и, лигированной в двух местах, быстро улучшает кровоснабжение головного мозга и сердца, и это приводит к восстановлению сердечной деятельности.

По данным Н. Н. Бурденко, переливание крови стимулирует деятельность вегетативной нервной системы, что можно объяснить улучшением кровоснабжения центральных ее отделов и улучшением газообмена.

Массивные переливания крови в большой степени повышают газообмен, что особенно заметно при исследовании больных в процессе капельных трансфузий. Менее выяснено заместительное действие перелитых лейкоцитов. В ряде работ отмечается роль лейкоцитов и иммунных антител, которые вводятся в организм больного при переливании крови и повышают его защитные свойства (Н. Б. Медведева, Д. А. Коган и др.). Однако следует отметить меньшую устойчивость перелитых лейкоцитов по сравнению с эритроцитами, особенно при переливании консервированной крови.

Большое значение в механизме заместительного действия гемотрансфузий принадлежит жидкой части крови

Роль перелитой плазмы особенно заметна при различных патологических процессах, ведущих к плазмопотере (шок, ожоги, анаэробная инфекция, последствия больших операций и т. д.), а также в случаях нарушения состава белков и других компонентов плазмы (кахексия, хроническая анемия и т. д.).

Использование для трансфузии обычной плазмы или сыворотки в смеси с глюкозой вызывает быстрое насыщение русла крови изохоллоидной, изоосмотической средой.

При введении концентрированных растворов сухой плазмы наблюдается повышение онкотического давления крови и устранение явлений гипопротеинемии (О. Д. Соколова-Пономарева и Е. С. Рысева), а также нормализация водного обмена (М. С. Дульцин).

Вместе с тем необходимо отметить более эффективное заместительное действие переливаний крови по сравнению с введением плазмы и сыворотки.

И. И. Зарецкий, провел интересное экспериментально- клиническое исследование по изучению водно-солевого обмена после переливания крови. Им было установлено, что в первые дни после гемотрансфузии имеет место некоторое сгущение крови, и хлоропения в результате задержки воды в тканях реципиента. В дальнейшем организм мобилизует свои запасы воды и солей и выводит их в циркуляцию в повышенном количестве, что и приводит к гидратации крови. Автору удалось установить важный факт активного участия эритроцитов реципиента в посттрансфузионных сдвигах:в содержании воды и хлора.

В первые дни после переливания крови наблюдается накопление воды и солей в эритроцитах, что является главным фактором посттрансфузионной гидремии. Проводя свод наблюдения на анемизированных больших, И. И. Зарецкий установил также, что под действием перелитой крови повышается проницаемость сосудистой мембраны реципиента.

Эксперименты на животных, проведенные в многочисленных работах, подтверждают мнение о весьма значительном удельном весе заместительного фактора в общем комплексе влияния гемотрансфузий на организм. Д. Н. Беленький отмечал, что собаки, у которых было произведено кровопускание 2/з объема крови, могли остаться живыми только после переливания крови. К аналогичным выводам приходит В. И. Шамов, Б. Ю. Андриевский, С. С. Брюхоненко и другие авторы.

В последней работе О. С. Глозмана и А. П. Касаткиной (1950) приведены эксперименты по замещению крови животного, «вымытой с помощью физиологического раствора, кровью донора». При этом животные оставались бодрыми и хорошо переносили операцию.

Исключительно яркие клинические наблюдения заместительного действия перелитой крови при резких степенях кровопотери имеют советские хирурги в мирное время и особенно во время Великой Отечественной войны. В. Н. Шамов пишет: «Истекший кровью, умирающий раненый, без пульса и без сознания, с еле заметным дыханием и не реагирующими зрачками, находящийся на краю гибели, после трансфузии оживает. Кожа его розовеет, сознание возвращается, появляется пульс, углубляется дыхание».

Кровь - жидкая ткань, циркулирующая в кровеносной системе человека и представляющая собой непрозрачную красную жидкость, состоящую из бледно-желтой плазмы и взвешенных в ней клеток - красных кровяных телец (эритроцитов), белых кровяных телец (лейкоцитов) и красных пластинок (тромбоцитов). На долю взвешенных клеток (форменных элементов) приходится 42–46 % общего объема крови.

Основная функция крови - транспорт различных веществ внутри организма. Она переносит дыхательные газы (кислород и углекислый газ) как в физически растворенном, так и в химически связанном виде. Этой способ­ностью кровь обладает благодаря гемоглобину - белку, содержащемуся в эритроцитах. Кроме того, кровь доставляет питательные вещества от орга­нов, где они всасываются или хранятся, к месту их потребления; образую­щиеся здесь метаболиты (продукты обмена) транспортируются к выдели­тельным органам или к тем структурам, где может происходить их дальней­шее использование. Целенаправленно, к органам-мишеням, кровью перено­сятся также гормоны, витамины и ферменты. Благодаря высокой теплоемко­сти своей главной составной части - воды (в 1 л плазмы содержится 900–910 г воды), кровь обеспечивает распределение тепла, образующегося в процессе метаболизма, и его выделение во внешнюю среду через легкие, дыхательные пути и поверхность кожи.

Доля крови у взрослого человека составляет примерно 6–8 % общей массы тела, что соответствует 4–6 л. Объем крови у человека может претер­певать значительные и длительные отклонения в зависимости от степени тренированности, климатических и гормональных факторов. Так, у некото­рых спортсменов объем крови в результате тренировок может превышать 7 л. А после длительного периода постельного режима он может становиться ни­же нормы. Кратковременные изменения объема крови наблюдаются при пе­реходе из горизонтального в вертикальное положение тела и при мышечной нагрузке.

Кровь может выполнять свои функции, только находясь в постоянном движении. Это движение производится по системе сосудов (эластичных тру­бочек) и обеспечивается сердцем. Благодаря сосудистой системе организма, крови доступны все уголки тела человека, каждая клетка. Сердце и крове­носные сосуды (артерии, капилляры, вены) образуют сердечно-сосудистую систему (рис. 2.1).

Движение крови по сосудам легких от правого сердца к левому называ­ется легочным кровообращением (малый круг). Начинается он с правого же­лудочка, выбрасывающего кровь в легочный ствол. Затем кровь поступает в сосудистую систему легких, имеющую в общих чертах то же строение, что и большой круг кровообращения. Далее по четырем крупным легочным ве­нам она поступает к левому предсердию (рис. 2.2).

Следует отметить, что артерии и вены различаются не по составу дви­жущейся в них крови, а по направлению движения. Так, по венам кровь по­ступает к сердцу, а по артериям оттекает от него. В системном кровообращении оксигенерированная (обогащенная кислородом) кровь течет по артериям, а в легочном - по венам. Поэтому, когда кровь, насыщенную кислородом, на­зывают артериальной, имеют в виду лишь системное кровообращение.

Сердце является полым мышечным органом, разделенным на две части - так называемое «левое» и «правое» сердце, каждое из которых включает предсердие и желудочек. Частично лишенная кислорода кровь от органов и тканей организма поступает к правому сердцу, выталкивающему ее к легким. В легких кровь насыщается кислородом, частично лишаясь углеки­слого газа, затем возвращается к левому сердцу и вновь поступает к органам.

Нагнетательная функция сердца основана на чередовании сокращения (систолы) и расслабления (диастолы) желудочков, что возможно благодаря физиологическим особенностям миокарда (мышечной ткани сердца, состав­ляющей основную часть его массы) - автоматии, возбудимости, проводимо­сти, сократимости и рефрактерности. Во время диастолы желудочки запол­няются кровью, а во время систолы они выбрасывают ее в крупные артерии (аорту и легочный ствол). У выхода из желудочков расположены клапаны, препятствующие обратному поступлению крови из артерий в сердце. Перед тем как заполнить желудочки, кровь притекает по крупным венам (полым и легочным) в предсердия.

Рис. 2.1. Сердечно-сосудистая система человека

Систола предсердий предшествует систоле желу­дочков; таким образом, предсердия служат как бы вспомогательными насо­сами, способствующими заполнению желудочков.

Рис. 2.2. Строение сердца, малый (легочный) и большой круги кровеобращения

Кровоснабжение всех органов (кроме легких) и отток крови от них носит название системного кровообращения (большой круг). Начинается он с левого желудочка, выбрасывающего во время систолы кровь в аорту. От аорты отходят многочисленные артерии, по которым кровоток распределяет­ся на несколько параллельных региональных сосудистых сетей, снабжающих кровью отдельные органы и ткани - сердце, головной мозг, печень, почки, мышцы, кожу и т. д. Артерии делятся, и по мере роста их числа уменьшается диаметр каждой из них. В результате разветвления мельчайших артерий (артериол) образуется капиллярная сеть - густое переплетение мелких со­судов с очень тонкими стенками. Именно здесь происходит основной дву­сторонний обмен различными веществами между кровью и клетками. При слиянии капилляров образуются венулы, которые далее объединяются в вены. В конечном счете, к правому предсердию подходят только две вены - верх­няя полая и нижняя полая.

Разумеется, фактически оба круга кровообращения составляют единое кровеносное русло, в двух участках которого (правом и левом сердце) крови сообщается кинетическая энергия. Хотя между ними существует принципи­альное функциональное различие. Объем крови, выбрасываемый в большой круг, должен быть распределен по всем органам и тканям, потребность ко­торых в кровоснабжении различна и зависит от их состояния и деятельно­сти. Любые изменения мгновенно регистрируются центральной нервной системой (ЦНС), и кровоснабжение органов регулируется целым рядом управляющих механизмов. Что касается сосудов легких, через которые про­ходит постоянное количество крови, то они предъявляют к правому сердцу относительно постоянные требования и выполняют в основном функции га­зообмена и теплоотдачи. Поэтому система регуляции легочного кровотока менее сложна.

У взрослого человека примерно 84 % всей крови содержится в большом круге кровообращения, 9 % - в малом круге и оставшиеся 7 % - непосредст­венно в сердце. Наибольший объем крови содержится в венах (примерно 64 % общего объема крови в организме), т. е. вены играют роль резервуаров крови. В состоянии покоя кровь циркулирует лишь примерно в 25–35 % всех капил­ляров. Основным кроветворным органом является костный мозг.

Требования, предъявляемые организмом к системе кровообращения, существенно варьируют, поэтому ее деятельность изменяется в широких пределах. Так, в покое у взрослого человека в сосудистую систему при каж­дом сокращении сердца выбрасывается 60–70 мл крови (систолический объ­ем), что соответствует 4–5 л минутного объема сердца (количество крови, выбрасываемое желудочком за 1 мин). А при тяжелой физической нагрузке минутный объем возрастает до 35 л и выше, при этом систолический объем крови может превышать 170 мл, а систолическое артериальное давление дос­тигает 200–250 мм рт. ст.

Кроме кровеносных сосудов в организме есть еще один тип сосудов - лимфатические.

Лимфа - бесцветная жидкость, образующаяся из плазмы крови путем ее фильтрации в межтканевые пространства и оттуда в лимфатическую сиcтему. Лимфа содержит воду, белки, жиры и продукты обмена. Таким обра­зом, лимфатическая система образует дополнительную дренажную систему, по которой тканевая жидкость оттекает в кровеносное русло. Все ткани, за исключением поверхностных слоев кожи, ЦНС и костной ткани, пронизаны множеством лимфатических капилляров. Эти капилляры в отличие от крове­носных с одного конца замкнуты. Лимфатические капилляры собираются в более крупные лимфатические сосуды, которые в нескольких местах впа­дают в венозное русло. Поэтому лимфатическая система является частью сердечно-сосудистой.